반응형 PCA알고리즘1 [혼공머신] 06-3 | 주성분 분석 https://youtu.be/ePqKgBnpcw4?si=C1oNBXH9fjyQ-ogJ 키워드차원 축소차원 축소는 원본 데이터의 특성을 적은 수의 새로운 특성으로 변환하는 비지도 학습의 한 종류이다. 차원 축소는 저장 공간을 줄이고 시각화하기 쉽다. 또한 다른 알고리즘의 성능을 높일 수도 있다.주성분 분석주성분 분석은 차원 축소 알고리즘의 하나로 데이터에서 가장 분산이 큰 방향을 찾는 방법이다. 이런 방향을 주성분이라고 부른다. 원본 데이터를 주성분에 투영하여 새로운 특성을 만들 수 있다. 일반적으로 주성분은 원본 데이터에 있는 특성 개수보다 작다.설명된 분산설명된 분산은 주성분 분석에서 주성분이 얼마나 원본 데이터의 분산을 잘 나타내는지 기록한 것이다. 사이킷런의 PCA클래스는 주성분 개수나 .. 2024. 11. 12. 이전 1 다음 반응형