본문 바로가기
반응형

AI/관련 자료16

[머신러닝] 손실 함수(Loss Function)란? 손실함수(Loss Function)는 머신러닝과 딥러닝 모델에서 모델의 예측값과 실제값 간의 차이를 수치적으로 표현한 함수입니다. 모델이 얼마나 잘못 예측했는지를 나타내며, 이 값을 최소화하는 것이 학습의 목표입니다. 주요 손실함수 유형*회귀 문제평균제곱오차(Mean Squared Error, MSE): 실제값(yi​)과 예측값(y^​i​)의 차이를 제곱하여 평균을 구함. 차이가 클수록 더 큰 패널티를 줌.평균절대오차(Mean Absolute Error, MAE): 차이의 절댓값 평균을 구함. 이상치(outlier)에 덜 민감. *분류 문제이진교차엔트로피(Binary Cross-Entropy): 예측확률(y^​i​)이 실제 클래스(yi​)에 가까울수록 손실이 작아짐.다중교차엔트로피(Categorical .. 2024. 11. 15.
[딥러닝] 원-핫 인코딩이란? / One-hot 원핫 인코딩(One-Hot Encoding)은 딥러닝에서 범주형 데이터(categorical data)를 수치형 데이터로 변환할 때 자주 사용되는 방법입니다. 이 방법은 각 범주형 값을 고유한 벡터로 표현해 모델이 이해할 수 있도록 하는데, 그 과정에서 특정 범주에 해당하는 위치만 1이고 나머지는 0인 벡터를 생성합니다.  예시를 통해 설명예를 들어, '과일'이라는 범주형 변수에 '사과', '바나나', '체리'라는 세 가지 범주가 있다고 가정해봅시다. 이 범주를 원핫 인코딩으로 변환하면 다음과 같은 벡터로 나타낼 수 있습니다:'사과' → [1, 0, 0]'바나나' → [0, 1, 0]'체리' → [0, 0, 1] 이렇게 각 범주가 벡터의 한 위치에 매핑되어 고유한 인덱스를 가집니다. 이 과정에서 특정 범.. 2024. 11. 14.
[딥러닝] 텐서플로 케라스란? / TensorFlow Keras 텐서플로 케라스(TensorFlow Keras)는 딥러닝 모델을 설계하고 훈련시키기 위한 고수준의 API로, 텐서플로의 일부입니다. Keras는 사용자 친화적이고 모듈화가 잘 되어 있으며 확장 가능하다는 특징을 가지고 있어, 초보자부터 전문가까지 다양한 수준의 사용자들이 이용할 수 있습니다. 여기서는 텐서플로 케라스의 주요 개념과 구성 요소를 살펴보겠습니다. 핵심 구성 요소1. 모델Keras에서는 Sequential 모델과 함수형 API를 통해 모델을 구성할 수 있습니다. Sequential 모델은 층을 순서대로 쌓아 만드는 가장 간단한 형태의 모델이며, 함수형 API는 입력과 출력이 여러 개이거나 모델 구조가 복잡한 경우에 사용합니다.2. 층(Layers)Keras에서는 다양한 내장 층을 제공합니다. .. 2024. 11. 14.
[머신러닝] 차원 축소와 주성분 분석 비지도 학습의 차원 축소비지도 학습에서의 차원 축소는 레이블이 없는 데이터의 특성(feature) 수를 줄이는 과정입니다. 이 방법은 주로 데이터의 가장 중요한 정보는 유지하면서 계산 복잡성을 줄이고, 과적합을 방지하며, 데이터의 시각화를 용이하게 하는 데 도움을 줍니다. 차원 축소는 데이터의 내재된 구조를 파악하는 데 유용하며, 여러 기법이 있지만 가장 널리 사용되는 기법은 주성분 분석(PCA), t-SNE, 그리고 LDA(Linear Discriminant Analysis) 등입니다. 비지도 학습의 차원 축소 예시: 고객 데이터 시각화고객 데이터에는 다양한 속성(예: 연령, 소득, 구매 횟수 등)이 포함되어 있을 수 있습니다. 이러한 데이터는 차원이 많아 직접적인 시각화가 어렵습니다. 차원 축소 기법.. 2024. 11. 11.
[머신러닝] 비지도 학습 k-평균 / K-means K-평균(K-means) 알고리즘은 비지도 학습의 가장 널리 사용되는 클러스터링 방법 중 하나입니다. 이 방법은 데이터를 K개의 클러스터로 그룹화하는 것을 목표로 하며, 각 클러스터는 클러스터의 중심(centroid)을 기반으로 형성됩니다. K-평균 알고리즘K-평균 알고리즘의 작동 원리K-평균 알고리즘의 기본 단계는 다음과 같습니다:초기 중심 설정: 먼저 데이터 포인트 중에서 무작위로 K개를 선택하여 각 클러스터의 초기 중심(centroid)으로 설정합니다.할당 단계: 각 데이터 포인트를 가장 가까운 클러스터 중심에 할당합니다. 클러스터 중심과의 거리는 보통 유클리드 거리를 사용하여 측정합니다.업데이트 단계: 각 클러스터의 중심을 새롭게 계산합니다. 이는 클러스터에 속한 모든 데이터 포인트의 평균 위치로.. 2024. 11. 8.
반응형